Autothermal catalytic Micromembrane Devices for Portable High-purity Hydrogen Generation

نویسنده

  • K. Deshpande
چکیده

The high efficiency and energy density of miniaturized fuel cells provide an attractive alternative to batteries in the portablepower-generation market for consumer and military electronic devices [1-3]. The best fuel cell efficiency is typically achieved with hydrogen, but safety and reliability issues remain with current storage options. Consequently, there is continued interest in reforming of liquid fuels to hydrogen. The process typically involves high-temperature reforming of fuel to hydrogen combined with a low-temperature PEM fuel cell, which implies significant thermal loss. Owing to its high hydrogen content (66%) and ease of storage and handling, methanol is an attractive fuel. However, partial oxidation of methanol also generates CO, which can poison the fuel cell catalyst [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOI-Supported Microdevice for Hydrogen Purification Using Palladium–Silver Membranes

High-purity hydrogen continues to receive attention as a promising energy source for fuel cells in portable power applications. On-demand hydrogen generation via fuel reforming offers a convenient alternative to hydrogen storage, but the concomitant CO generation is deleterious to the fuel cell catalyst. Of the possible hydrogen purification options, palladium membranes allow a compact design s...

متن کامل

A Novel Study of Upgrading Catalytic Reforming Unit by Improving Catalyst Regeneration Process to Enhance Aromatic Compounds, Hydrogen Production, and Hydrogen Purity

Catalytic reforming is a chemical process utilized in petroleum refineries to convert naphtha, typically having low octane ratings, into high octane liquid products, called reformates, which are components of high octane gasoline. In this study, a mathematical model was developed for simulation of semi-regenerative catalytic reforming unit and the result of the proposed model was compared with ...

متن کامل

A CFD model for methane autothermal reforming on Ru/ - Al2O3 catalyst

Hydrogen is the preferred fuel for fuel cells due to high reactivity for electrochemical reaction at anode. In the present study, a three dimensional CFD (Computational Fluid Dynamics) code was developed and validated to simulate the performance of a catalytic monolith fuel processor used for hydrogen generation. Methane autothermal reforming on 5% Ru/ -Al2O3 catalyst was selected as the reacti...

متن کامل

Simulating and Optimizing Hydrogen Production by Low-pressure Autothermal Reforming of Natural Gas using Non-dominated Sorting Genetic Algorithm-II

Environmental considerations will probably change automobile fuels from gasoline and gas-oil to hydrogen (as fuel cell) in the future. Problems of fossil fuels include producing gaseous pollutants, such as NOx, CO, and even SO2 (from incomplete-hydrotreated fuels), which need catalytic converters and greenhouse gas emission (such as CO2, CH4, N2O) from the exhaust with a drastic effect on globa...

متن کامل

Hydrogen Production from Simulated Gasoline using Nickel-Based Catalysts

Introduction Fuel cells, which produce electricity directly from hydrogen and oxygen, offer a clean and efficient potential alternative to internal combustion engines for generating power for portable and transportation applications. However, there currently is no infrastructure for the wide scale production and distribution of hydrogen to the transportation market. Instead of building new infr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008